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SUMMARY 

Very homogeneous fields are needed in the magnetic 
testing of spacecraft. One method of obtaining such fields 
is to use a number of circular coils on a common axis. The 
parameters of the best three and four coil systems were 
obtained by setting to zero as many terms as possible in 
the equation for the field along the axis of the system. The 
parameters are presented in the form of tables and curves. 
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THREE AND FOUR COIL SYSTEMS FOR HOMOGENEOUS MAGNETIC FIELDS 

by 
M. E. Pittman and D. L. Waidelich 

Goddard Space Flight Center 

INTRODUCTION 

In testing the magnetic properties and instruments of spacecraft, there is a need to cancel the 
earth's magnetic field and then produce a very homogeneous controlled magnetic field. The working 
volume should be conveniently accessible and the electrical design and construction should be as 
simple as possible. Since the working volume required is large, it appears that the use of air-core 
coils is the only practical solution. Most of the previous work has been on circular coils and these 
will beconsidered here, although square coils might have some constructional advantages. The vol- 
ume of homogeneity for two coils (Helmholtz pair) is so small that prohibitively large coils would 
be needed for the required uniformity. For four coils, a much larger volume of homogeneity may 
be obtained for a given size of the coils. A few special solutions have been given for the four coil 
system but no general solution over the whole range of parameters seems to have been made. It is 
the purpose of this paper to present such a solution and to indicate the various optimum values. The 
availability of a general solution will allow the design of a system when various factors such as the 
size or shape of the object being tested do not allow an optimum value to be used. In preparing for 
the solution of the four coil system, it w a s  found that the solution of the three coil system was use- 
ful. The general solution of the three coil system is also presented here but access to the volume 
of uniform field is quite limited because of the position of the center coil. 

The magnetic field of a single circular coil may be obtained by various methods, such as by the 
use of a scalar or  vector magnetic potential (References 1 and 2). The magnetic field along the axis 
of the coil is 

m 

H = a n z n  , 
n'O 

where z is the distance along the axis measured from the origin 0 as shown in Figure 1, z < b, . Also 
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where N is the number of turns on the coil, I is 
the current through the coil, and 

en+, (x )  -p--.;"-- p i + ,  ( X I  .= & . 

Pn ( x )  is the nth order Legendre polynomial and Figure 1-The single circular coil. 

x = cos a. . 

Two or more of the coils on a common axis may be used to produce a more homogeneous magnetic 
field than is possible with one coil. This is done by making as many terms zero beyond a,, i n  Equa- 
tion l as is possible (References 3 and 4). The same results may be obtained by use of a potential 
(References 5 and 6). 

For a symmetrical four coil system as shown in Figure 2, the magnetic field along the axis is 

where 

N l I ,  (1 - x:) "Ilt1 ' N 1 1 2 ( l  bzn+l  - x:) p'"t1(x2) ' (4) 
'n = b,"" 

The terms for the ,odd values of n in Equation 3 a r e  not 
considered since they become zero because of symmetry. 

THREE COIL RESULTS 

The three coil solution is obtained by setting x1 0 

Figure 2-The four coil system. or  = 90". This has the effect of making the two inner 
coils of Figure 2 become the one center coil of Figure 3. 
With three coils it is possible to make a2 and a4  in Equa- 
tion 3 zero and then as  may be made a minimum. The 
solution is given in more detail in appendix A and results 
a r e  shown in Figures 4 and 5 (A6 and B6 will be defined 
later). Additional results a r e  presented in Table 1. The 
range of xz  in Figures 4 and 5 is from 0,4472 to 0.7651 
and the ratio of the radii b = b b, ranges from infinity to 
zero as shown in Figure 4. This indicates that when x2  is 
close to 0.4472 the diameter of the center coil should be 
smaller than that of the two outer coils, whereas when x2 

is close to 0.7651 the diameter of the center coil should be 

1;b 
2 1  

Figure 3-The three coil system. 
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larger than that of the two outer coils. From Table 1 all three coils should have equal diameters at 
x p  = 0.6051 and at x 2  = 0.6547 the three coils should lie on the surface of a sphere. The range of the 
ratio of ampere-turns, I = N 2 1 p / N l I l  is from infinity to zero as shown in Figure 4. Where x1 = 0 the 
two inner coils of L four coil system become the center coil of a three coil system. The ampere-turns 
on the center coil then would be 2N,11 , and the actual ratio of ampere-turns of an outer coil to the 
ampere-turns of the center coil is N , 1 , / 2 ~ , 1 ,  = I/2. When x p  is close to 0.4472, the number of 
ampere-turns of the center coil should be smaller than that of the outer coils, and when x p  is close 
to 0.7661, the number of ampere-turns of the center coil should be larger than that of the outer coils. 
From Table1 the three coils would have an equal number of ampere-turns at x2 = 0.6402. 

~ 

- 

- 

- 

- 

- 

- 

- 

-- 
0.40 

The most homogeneous field would be the one which made the remainder of the series of Equa- 
tion 3 a minimum; i.e., in 

the sum of the terms in as, a* ,  and so on should be a minimum. Since the term containing as usually 
is much larger than the sum of the remaining terms, making the as term a minimum should give a 
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Figure 5-Calculated values of A, and B, vs. x2 for the three coil system. 

Table 1 

Particular Three Coil Systems. 

0.6051 52.76 1.256 

1 0.7651 1 40.08 10.000 

I 

m 

3.763 

3.076 
2.000 

1.531 

0.000 

~- 
A, 

-2.100 

- 2.0369 

- 2.0364 
- 2.0388 
-2.043 

-2.167 
~ 

'6 

-m 

-3.214 

-2.925 
-2.351 

- 2.043 

-m 

Remarks 

End point 

Coils of equal diameter, 
Barker's solution (Reference 3) 

Minimum IA,l 
Coils of equal ampere-turns 

Minimum le,(, Maxwell's 
solution (Reference 6), coils 
on surface of sphere 

End point 
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close approximation to the optimum field. This may be done in a number of ways 
upon which parameter or  combinations of parameters are  assumed to remain constant. 
ample let 

depending 
As an ex- 

(6) 

In Equation 8 i f  the mean radius from the center of the system 6 = (b,b,2) 1 / 3  for the three coils 
were constant, the a6 term would have its minimum at x2 = 0.6163 as shown in Figure'5 and Table 1. 
A s  a second example let 

If the larger radius from the center of the system to the coils 

(7) 

(bz 2 b*) ' 

(bl 2 be) . 

bm were constant, the a, term would 
have its minimum at x2 = 0.6547 as shown in Figure 5 and Table 1. If the system must be limited 
to a certain largest volume, probably the second optimum, that of B,, would be the better of the two 
to use. It is possible to define other optima as well but it is believed that these two a re  the most 
useful and practical. 

FOUR COIL RESULTS 

With a four coil system such as that shown in Figure 2, it is possible to make a 2 ,  a4 ,  and a6 of 
Equation 3 equal zero and to make as a minimum. This solution is carried out in more detail in Ap- 
pendix A and the results a r e  shown in Figures 6 and 7 and Table 2. The range of x2 in Figures 6 
and 7 is from 0.44721 to 0.87174 and the corresponding x1 as shown in Figure 6 decreases from 
0.20929 to a minimum of 0.20360 and then increases to a maximum of 0.44721. The ratio of the 
radii b = b b, ranges from infinity to zero. Thus when x2 is close to 0.44721, the diameter of the 
two inner or No. 1 coils should be smaller than that of the two outer or No. 2 coils, but when x2 is 
close to 0.87174 the diameter of the No. 1 coils should be larger than that of the No. 2 coils. As in- 
dicated in Table 2 at x2 = 0.68519all four coils have the same diameter, whereas at x2 = 0.76505 
the four coils lie on the surface of a sphere. At 0.85363 they lie in the same plane perpendicular to 
the axis of the system, the No. 1 coils having a diameter 3.76797 times that of the No. 2 coils. From 
x2 = 0.85363 to 0.87174, the No. 2 coils a r e  closer to the center of the system than the No. 1 coils. 
It is interesting to notice that if  the No. 1 and No. 2 coils are  interchanged the two end points of 
Table 2 become identical. The range of the ratio of ampere-turns, I = N ~ I ~ / N , I ~ ,  goes from infinity 
to zero as shown in Figure 6. When x2  is close to 0.44721 the number of ampere-turns of the 
No. 1 (inner) coils is smaller than that of the No. 2 (outer) coils, and for x2 close to 0.87174 
the number of ampere-turns of the No. 1 coils is larger. 
at xZ = 0.74207. 

2 1  

All coils have equal ampere-turns 
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Figure 6-Calculated values of x ,  , I, and b vs. x2 for the four coil system. 
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Table 2 

Particular Four Coil Systems. 

x 1  

0.20929 
0.20360 
0.23629 

0.26786 

0.27235 
0.27505 
0.2852 3 

0.39864 

0.4472 1 

x 2  

0,44721 
0.51 961 
0.68519 

0.74207 

0,74842 
0,75208 
0.76505 

0.85363 

0.87174 

b 

m 

2.49155 
1 .33407 

1 .09795 

1.07127 
1.05576 
1 .ooo 

0.46699 

0.000 

I 

a, 

56.00025 
2.26058 

1 .ooo 

0.90406 
0.85165 
0.6821 1 

0.024565 

0.000 
. .. 

A, 

- 2.35384 
- 2.34170 
- 2.471 33 

- 2.23448 

-2.22196 
- 2.2 1988 
-2.25510 

-2.34225 

- 2.35384 
. _ _  

B, 

- m  

-90.24299 
- 7.82798 
- 3.24721 

- 2.92648 
- 2.75803 
- 2.25510 

-49.24825 

- m  
. - ... - -. . 

Remarks 

End point 

Minimum x,  

Al l  coils have equal diameters, Barker's 
solution (Reference 3) 
All coils have equal ampere-turns 
Braunbek's solution (References 6 and 7) 

Optimum using both A, and A,, 
Optimum using A, only 

A l l  coils on surface of a sphere. 
Optimum using E,. McKeehan's solution 
(References 5 and 6) 

Both No. 1 and No. 2 coils l ie i n  the 
same plane perpendicular to the axis of 
the system 

End point 
. . - - - ~  

The m-ost uniform field is the one which makes the remainder of the series of Equation 3 a 
minimum; Le., in 

the sum Of the terms involving a,, al  o, etc. should be made a minimum. A good approximation to 
this minimum should be that which makes the a, term a minimum. This may be done in a number 
of ways, one Of which is to make the mean radius from the center of the system, 
stant and define 

= (blb2) 1 / 2 ,  con- 

Figure 7 shows a curve of A, plotted against x2 and Table 2 gives some values of A, including those 
at the end points. The minimum value of A, as given in Table 2 and shown in Figure 7 is -2.21988, 
which occurs at x2 = 0.75208and x1 = 0.27505. 
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Another way of making the a, term a minimum is to put 

where bm is the larger radius from the center of the system to the coils. A curve of B, against x2 is 
shown in Figure 7 and some values of B, are given in Table 2. One of the values in Table 2 is the 
minimum value of B, = -2.25510, which occurs at x2 = 0.76505 and x1 = 0.28523. If more than one 
term is considered in the series of Equation 8, the minimum depends upon the magnitude of Z .  For 
example, consider the a, and a,  terms. They may be written as 

where 

C = A, + A,, ( - 7  . 
The minimum value of c is the same as the minimum value of A, when z = 0 but when z / 6  = 0.2167, 
the minimum value of coccurs at x2  = 0.74842 and x1 = 0.27235 as given in Table 2. 

There a r e  several other well-known four coil solutions which do not have as great a uniformity 
as the solutions given in Figures 6 and 7 and Table 2 because only two coefficients of Equation 3, a2 

and a4, a re  made zero. Neumann (Reference 6) and Fanselau (References 4 and 8) put x1 and x2 at 
the roots of P; ( x )  = O  to make a4 zero, chose the ampere-turns of both No. 1 and No. 2 coils to be 
equal, and found b by putting a2 0 .  Further details a r e  given in Table 3. Fanselau (Reference 10) 
in another solution made a4 zero by using the roots of PS; (x )  = 0. Both coils on one side of the sys- 
tem were put in the same plane perpendicular to the axis of the system and a2  was made zero by 
choosing I = 28.2897. The ratio of the diameter of the smaller coil to that of the larger was0.250495 
and b = 0.372830. Fanselau also indicated that a similar solution could be found where both sets of 
coils would have the same radius. Several additional four coil solutions with both a 2  and a4 zero a re  
given by McKeehan (Reference 6). Scott used four coils, the inner pair having a smaller diameter 
than the outer pair (Reference 11). His  solution had both a2 and a4 zero. Franzen (Reference 12) 
used Garrett's theory (Reference 5) to develop a theory on a finite coil cross-section for a four coil 
system. 
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Table 3 

Specifications of Various Coil Systems. 

Nsumann-Fonrslw 
(References 6 and 8) 

6 

Bmunbek-McKsahan Wi I I iomr-Coin Neumonn-McKeehon Wi 1 1 iams-Coin 
(References 6 and 7) (Reference 9) (Reference 6) (Reference 9) 

6 6 8 a 
Coils havr aqud ompre-turns of rphmra 

01 to (110 

0.190655 0.20929922 

Coils have equal Coils l ie on rurfocs of rphar. 
ampere-turns 

.a1 tooa '2 to 

0.1652754 I 0.1652754 

0.87174003 0.7387739 I 0.843307 0.87174003 I 0.7387739 

0.91 95342 

1 .00 1 .00 0.8270469 1 .oo 0.891626 

1 .oo I 0.5108492 1.00 I 1 .00 0.686604 

Source 

Number o f  Coils 

krumptionr 

The a's that ore zero 

Coefficient o f  next term, A, 

Ampere 
(Reference 6) 

1 

N O W  

None 

-1.5 

0 

0.26 

0.26 

Helmhbltr 
(Rcfe*ncd 6) 

2 

Now 

Oi 

-1.8 

0.44721 36 

4.86 

brker  
(Reference 3) 

3 

Equal diameter coils 

01. a. 

-2.03689 

0.0 

Maxwsl l  
(Reference 6) 

3 

Coils on rurfocs of rphers 

4 . 0 4  

-2.0428571 

0.0 *I 

1 
b 

I 

Far an 
Inhomcgsncity 
of 10-5 (percent) 

--1 0.61627 0.605108 

1.25606 

3.76323 

13.0368 

'0.6546537 

1.00 

1.53125 

1.19697 

13.031 13.0373 

4.86 12.083 13.031 

Braunbtk 
(Referenee 7) 

4 

Coils hove equal ompere-turns 

Barker 
(Reference 3) 

4 

Coils hove equal d i m e t e n  

Neumonn-Fanrelov 
(References 6 and 8) 

4 

Coils hove equal ampere-turns 

9, 0 4  

-1.289 

0.285232 

0.765055 

I ,136W9 

I .w 
14.07 

13.20 

McKeehon 
(References 5 and 6) 

4 

Source 

Number of coils 
1 

Coils on surface of sphere Nolle 1 Asrumptiom 

The 0'1 that ore zero 

Coefficient of next term, A, 

X I  

X l  

b 

I 

For an 
inhomogeneity 
of 10-5 I 

1 
o l ,  a,. ag 

-2.47133 

0.23629 

02,a, ,  0 8  

-2.2551 02 __ 
0.2852315 

a2 ,  a,, ag  

0.2723547 

0.68519 0.7650553 0.7484183 

1.09795 1.33407 1.00 

1 .oo 2.26058 0.6821109 0.9040608 I 
21.672 

20.682 

21.480 

18.583 

21.607 

21.607 

~ 

21.677 

S O " K 0  

Number of coils 

krumptions Coils have equal ampere-turns 

al I a4, a1 

0.20929922 

0.59170018 I 0.550274 I 0 . 5 ~ 1 ~ w i a  I 0.4779250 I 0.4779250 I 

1.07 1723 

1.242359 

1.046147 I 1.00 I 1.0222398 I 1 .00 1 
1,157907 I 1 .00 

I I I 1.00 I 0.406992 1 
31 I l6 
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In Table 3 the specifications of several coil systems a re  presented along with an indication of 
how large a sphere about the center of the system will have a given homogeneity. Several three and 
four coil systems are given together with the two coil system of Helmholtz and the presently known 
six and eight coil systems. These a re  compared on a basis of an inhomogeneity of An exam- 
ple will now be given by using the minimum A, solution for the four coil system: 

and 

(+) = 0.21677(or 21.677 percent) . 

This means that if 6 = 10 feet and only the A, term is considered, the inhomogeneity of the magnetic 
field inside a sphere 2.1677 feet in radius is less than or equal to 
netic field at the center of the system. If B, is used 

or 0.001 percent of the mag- 

and 

k) = 0.20944 (or 20.944 percent) . 

The number of ampere-turns in the middle coil of the three coil system should be 2N111 . For the 
six coil systems, the X ' S  for the Neumann-Fanselau and the Williams-Cain solutions are the root8 
of P; ( x )  =O. Also, for the eight coil systems the x ' s  for the Neumann-McKeehan and the Williams- 
Cain solutions a re  the roots P; ( x )  = 0. Similar solutions with the roots of PA+l(x) = 0, where n is 
even, could be found for systems containing ten, twelve, o r  more coils (Reference 9). In fact Garrett 
mentions the fact that the solution for a sixteen coil system could be found readily (Reference 5). 
The Williams- Cain solution always gives the optimum solution for minimum B2". 

CONCLUSIONS 

Complete solutions along with tables and curves that should be useful in design work have been 
presented for the three and four circular-coil systems with zero for the cross-sectional areas of 
the coils. Comparisons of these results have been made with the two coil (Helmholtz) and the known 
six and eight coil systems. At the present time the following a re  needed: 

1. A complete study of the six coil problem over the ranges of all of the parameters. 

2. An investigation of the square or rectangular coil systems. 

3 .  An analysis of the effect of finite cross-sectional area of the coils. 
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Appendix A 

Solution of the Coil Sytems 

THREE COIL SYSTEM 

Put xi  = 0 in Equation 4 and let b .= bdb, and I = NzIz/klIl. Then for n = 2 and n = 4 in 
Equation 4 

where 

3 
PJ (xz) = -&x; - 1) 

and 

P;(x2) = T(21x: - 14x: t 1) . 

From Equations A1 and A2 

15 
- ~ b l  

3 I(l -x;) +T 
b3 =p;o=p;o~ 

Therefore, 

b3 1 ,= 
(i - x?) (5x2 - 1) . 

In Equation A4, b2 must be positive, BO the only possible solutions must have 0.0 I xz 5 52 or 
0.4472 5 xZ 5 0.7651 where 0.4472 is the root of Pi (x2) = Oand 0.2852 and 0,7651 a re  the roots of 
P; (xz) = 0 , The range of values of x2 from 0.4472 to 0.7651 produces positive values of I and the 
range from 0.0 to 0.2852 produces negative values of I. A negative value of I means that the current 
direction in the center coil is reversed from those in the two outer coils. 

13 



For the a6 term of Equation 3 let 

i ’  

where a6 and a. a re  given by Equation 2. Then, by the use of Equations 4, A4, and A5 

The value of x2 at which Equation A7 has i ts  minimum value is 0.6163. This value of x2 is in the 
range for which I is positive. Hence, for the three coil solution at least, making all currents flow 
in the same direction will produce a more homogeneous field. Another minimum value may be ob- 
tained by defining 

[bt$ = -  (0.6547 5 x2 5 0.7651) , 
b4 

where b = 1.0 at x2 = 0.6547. Then the minimum value of B6 occurs at x2 = 0.6547. 

FOUR COIL SYSTEM 

For n = 2, 4, and 6 from Equation 4, with b = b2/bl and I = N212/NlIl: 

b3 (1 - x;) Pi (xl) t I (1 - x:) Pi (x2) = 0 , 

b5 (1 - x:) Pi (xl) + I (1 - x:) Pi (x2) 

b’ (1 - x,?) Pi (xl) + 1(1 - x:) Pi (x2) 

= 0 , 

= 0 , 

where 

p; = ~ ( 4 2 9 ~ :  7 - 495x14 + 135~; - 5) , 

and P; (x2) and P; (x2) a re  given after Equation A2. From Equations A9-All  

14 



Then 

From this equation: 

or 

For a given x2, Equation A15 is solved for x 1  and the ratio of the radii b is obtained from Equa- 
tion A13. The ampere-turn ratio 1 may be obtained by the use of Equation A12: 

The use of a computer allows numerous solutions to be obtained over the range for x 2  from 0.4472 
which is a root of P;(x) = o to 8,8717 which is a root of P;(x) = 0. The corresponding range for x1 
is from 0.2036 to 0.4472. For these values I is positive. I may be negative when both x1 and x2 lie 
in the range between 0.4472 and 0.5917 where 0.5917 is a root of P;(x) = 0. The values for negative 
I were not calculated because the more useful values were in the range where I is positive. 

For the ag term of Equation 3 let 

8 8  

2 a. 
A, b , 4 b 4 - ,  

where a, and a. a re  given by Equation 2. Then by the use of Equations 4, A13, and A16 

I where 

45 
PL(x) = m ( 2 4 3 1 x e  - 4004x6 t 2002x4 - 308x2 t 7) I 

The minimum value of lhgl is 2.21989 which occurs at x i  = 0.27505 and xz = 0.75209. If the sum of 
both the a, and a l 0  terms is minimized the minimum occurs at x1 = 0,27235 and x2 = 0.74841. Again, 
another minimum may be defined by taking 
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